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We consider the problem of weakly nonlinear buoyant convection in horizontal mushy
layers with permeable mush–liquid interface during the solidification of binary alloys.
We analyse the effects of several parameters of the problem on the stationary modes
of convection in the form of either a hexagonal pattern or a non-hexagonal pattern
such as rolls, rectangles and squares. No assumption is made on the thickness of the
mushy layer, and a number of simplifying assumptions made in previous theoretical
investigations of the problem are relaxed here in order to study the problem based on
a more realistic model. Using both analytical and numerical methods, we determine
the steady solutions for the nonlinear problem in a range of the Rayleigh number
R near its critical value. Both the nonlinear basic state and variable permeability of
the present problem favour hexagon-pattern convection. The results of the analyses
and computations indicate that depending on the range of values of the parameters,
bifurcation to hexagonal or non-hexagonal convection can be either supercritical
or subcritical. However, among all the computed solutions in the particular range
of values of the parameters that are most relevant to those of the experiments,
only convection in the form of down-hexagons with downflow at the cell centres
and upflow at the cell boundaries, was found to be realizable, in the sense that its
amplitude increases with R.

1. Introduction
The present study considers the problem of finite-amplitude steady convection in

horizontal mushy layers during the directional solidification of binary alloys. The
investigation is based on combined analytical and numerical methods for solving the
governing equations, which were first derived by Hills, Loper & Roberts (1983) and
later by Worster (1992) in the context of a two-layer system, in order to determine
qualitative results about buoyant convection in mushy layers. The novel aspects of
the present study are that a number of simplifying assumptions, which were made in
previous linear and weakly nonlinear analyses of the problem (Fowler 1985; Amberg &
Homsy 1993; Emms & Fowler 1994; Anderson & Worster 1995; Chung & Chen 2000),
are no longer needed and, the present results are expected to be more realistic.

Hills et al. (1983) developed a set of thermodynamic equations for a mushy layer
and then solved a simplified set of those equations approximately for the constrained
growth of a binary alloy. Fowler (1985) developed a mathematical model for a mushy
layer and analysed a simple mushy layer with constant permeability and with no
coupling between the convective flow and the solidification. Worster (1992) solved
the linear instability problem for a binary-alloy solidification system consisting of
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a horizontal mushy layer and an overlying liquid layer. He detected two distinct
modes of instability, one of which has been referred to as the mushy-layer mode. This
mode drives the convective flow from the interior of the mushy layer and is the one
responsible for the development of the chimneys within the mushy layer. This result
is in agreement with the experimental result (Tait & Jaupart 1992) and is the main
basis for the development of the present model as well as for the earlier analytical
one (Amberg & Homsy 1993).

The simplified mushy-layer model for a weakly nonlinear study was introduced first
by Amberg & Homsy (1993). The model was based on a near eutectic approximation
and in the limit of large far-field temperature. It was used to examine the dynamics
of the mushy layer in the regime of small deviation from the classical system of
convection in a horizontal porous layer of constant permeability. To construct such a
single-layer model for the mushy zone, Amberg & Homsy (1993) made a number of
simplifying assumptions including those stated above and that the thickness δ of the
mushy layer is sufficiently small and the layer is totally isolated from the overlying
liquid layer. In addition, they assumed that the amplitude ε of convection is of
the same order as δ. The finite-amplitude steady convection studied by Amberg &
Homsy (1993) was limited to two-dimensional rolls and hexagons only. The authors
found that two-dimensional rolls were supercritical for sufficiently small values of the
deviation of the permeability from a constant value and subcritical if such deviation
was not too small, and steady hexagons were found to be transcritical.

Anderson & Worster (1995) used the basic model due to Amberg & Homsy (1993),
but extended the analytical studies to the limit of large Stefan number S, which
represents the latent heat release due to solidification, and the case ε � δ � 1. They
applied a double-series expansion in powers of ε and δ for the rescaled variables
and the Rayleigh number R. They focused on the steady modes of convection and
calculated, in particular, the finite-amplitude steady solutions in the form of two-
dimensional rolls and hexagons.

Chung & Chen (2000) modified the boundary conditions of the Amberg & Homsy
(1993) model, replacing the condition of no vertical volume flux at the top boundary
by a condition of constant pressure. This alteration results in a mushy layer that is
more coupled to the upper melt layer. They found better agreement with the results
of the linear study for the two-layer system (Worster 1992).

Tait, Jahrling & Jaupart (1992) carried out carefully controlled laboratory
experiments on a water–ammonium chloride solution in a square tank. In the early
stages of their experiments, they observed hexagonal planform of convection in the
mushy layer near the onset of motion. The flow structure was observed to be in the
form of down-hexagonal cells in the sense that upflow occurred mainly at the cell
boundaries and downflow at the cell centres.

The weakly nonlinear analyses carried out in the past, which were described briefly
earlier in this section, were based on a number of unrealistic assumptions such as
that of a thin mushy layer, and the results for the planform of convection were not
generally consistent with the corresponding experimental observations.

Here, a weakly nonlinear analysis of buoyant convection in a more realistic mushy-
layer model is undertaken by removing a number of simplifying and unrealistic
assumptions that were made in previous nonlinear analyses of the problem in order
to establish a better model in predicting results that validate the main experimental
results and can be used in applications such as that of controlling chimney convection
within a mushy layer, which is known to lead to a class of defects called freckles in
the solidified alloy (Copley et al. 1970).
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Figure 1. This is a schematic diagram for the physical system.

Sections 2 and 3 deal with the mathematical formulation of the problem and the
analyses. The results are presented and discussed in § 4, which is followed by the
conclusion and some remarks in § 5.

2. Mathematical formulation
2.1. The model

We consider a binary alloy melt that is cooled from below and the denser alloy is
solidified at a constant speed V . Owing to the solidification process, a distinct mushy
layer which is composed of a mixture of melt and solid dendrites forms between a
lower solidified material and an upper liquid melt (figure 1). The overlying liquid melt
is assumed to have a composition C0 > CE and temperature T∞ > TL(C0) far above
the mushy layer, where CE is the eutectic composition and TL is the local liquidus
temperature (Worster 1991).

Following Worster (1991), the mushy layer is assumed to be in a state of
thermodynamic equilibrium so that

T̃ = TL(C0) + Γ (C̃ − C0), (1)

Where T̃ is the temperature, C̃ is the composition and Γ is the constant slope of
the liquidus. We consider the solidifying system in a moving frame of reference ox ′

y ′ z′, whose origin lies on the solidification front and translating at speed V with the
solidification front in the positive z′-direction (figure 1), which is anti-parallel to the
gravity vector.

We model the mushy layer as a porous medium where Darcy’s law holds, and, when
the Oberbeck–Boussinesq approximation is applied, conservation of mass, momentum,
heat and composition can be written as the corresponding dimensional equations
(Worster 1991). Conditions for a mushy layer to exist, its thickness d to be dictated
and the conditions at the mush–liquid interface are all given in Worster (1991) and
will not be repeated here. Here, the mush–liquid interface is assumed to be permeable
and with the temperature maintained at the liquidus temperature.

A hybrid of the single- and double-layer approaches is developed into the model
presented here. We retain the decoupling of the liquid and mushy regions, so that
only the mushy region is considered. However, we presuppose the existence of the
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upper liquid region and apply an integration procedure, which was described and
used in Worster (1991) in the limit of sufficiently small solute diffusion, to obtain
the mushy-layer thickness in terms of the characteristic length due to the thermal
diffusion. This approach has also been taken for studying linear stability in the two-
layer model (Worster 1992; Chen, Lu & Yang 1994). Our weakly nonlinear approach
is then a standard one, which is based on a combination of a perturbation technique
for small-amplitude parameter ε and some numerical integration.

2.2. Non-dimensional system

The governing equations are non-dimensionalized by using V , κ/V , κ/V 2,
β�Cρ0gκ/V , �C and �T as scales for velocity, length, time, pressure, solute and
temperature, respectively. Here κ is the thermal diffusivity, g is acceleration due to
gravity, ρ0 is a reference density, β = β∗ − Γ α∗, where α∗ and β∗ are the expansion
coefficients for the heat and solute, respectively, �C =C0 − CE , �T = TL(C0) − TE

and TE is the eutectic temperature. The non-dimensional form of the equations for
momentum, continuity, temperature and solute concentration are then

K̃(χ̃ )ũ = −∇p̃ − Rθ̃ez, (2a)

∇ · ũ = 0, (2b)

(∂/∂t − ∂/∂z)[θ̃ − S(1 − χ̃ )] + ũ · ∇θ̃ = ∇2θ̃ , (2c)

(∂/∂t − ∂/∂z)[χ̃ θ̃ + C(1 − χ̃ )] + ũ · ∇θ̃ = εm∇2θ̃ , (2d)

where ũ = ũex + ṽey +w̃ez is the volume flux vector per unit area, which is also known
as the Darcy velocity vector (Joseph 1976), ũ and ṽ are the horizontal components
of ũ along the horizontal x- and y-directions, respectively, ex and ey are unit vectors
along the positive x- and y-directions, w̃ is the vertical component of ũ along the
z-direction, ez is a unit vector along the positive z-direction, p̃ is the modified pressure,
θ̃ is the non-dimensional composition, or equivalently temperature (Worster 1992),
θ̃ = [T̃ −TL(C0)]/�T = (C̃−C0)/�C, t is the time variable, χ̃ is the local liquid fraction
or porosity, R = β�CgΠ (1)/(V0ν) is the Rayleigh number, Π (1) is a reference value
at χ̃ =1 of the permeability Π (χ̃ ) of the porous medium, which is assumed to be
finite (Worster 1992), ν is the kinematic viscosity, K̃(χ̃ ) ≡ Π (1)/Π(χ̃ ), εm = Dm/κ

is the inverse of the Lewis number, S = L/(Cm�T ) is the Stefan number, Cm is the
specific heat per unit volume, L is the latent heat of solidification per unit volume,
C = (Cs − C0)/�C is a concentration ratio and Cs is the composition of the solid
phase forming the dendrites. Following Worster (1991), we assume that temperature
equilibrates much faster than mass, so that εm =0 is considered for all the analyses
and the results herein.

The governing equations (2a)–(2d) are subject to the following boundary
conditions:

θ̃ + 1 = w̃ = 0 at z = 0, (3a)

θ̃ = 1 − χ̃ = ∂w̃/∂z = 0 at z = δ, (3b)

where δ = dV/κ is a growth Péclet number representing the dimensionless depth
of the layer. The boundary conditions (3a) as well as those given in (3b) for the
temperature and liquid fraction at z = δ are the same as the corresponding ones for
a two-layer system (Worster 1992). The condition ∂w̃/∂z = 0 in (3b) is the one used
by Chung & Chen (2000) on the permeable upper boundary. This condition can
be derived easily from (2a)–(2b) by assuming the constant pressure condition that
was assumed by Chung & Chen (2000) on the upper boundary. For the constant
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pressure condition, (2a) yields ∂ ũ/∂x = ∂ṽ/∂y = 0, and (2b) then implies ∂w̃/∂z =0. A
physical justification for using such a permeable boundary condition is briefly given
as follows. For a two-layer system (Worster 1992), the condition of the continuity of
pressure, which holds across the mush–liquid interface, leads to a boundary condition
on this interface that was derived and given in Worster (1992), and such a boundary
condition is reduced to ∂w̃/∂z = 0 in the limit of sufficiently small Darcy number
Da =Π (1)/d2. As Worster (1992) noted, Da can represent the square of the ratio of
the average spacing between dendrites to the thermal length scale, and such a ratio
is typically very small.

The permeability relation is K̃(x, y, z, t) =Π (1)/Π(χ̃ ) and the permeability Π (χ̃ )
is derived from Π (χ̃ ) = χ̃3 (x, y, z, t) to obtain

K̃ = χ̃−3, (4)

where K̃ decreases with increasing χ̃ , which is physically realistic. Equation (4)
resembles a Kozeny-type equation for the variable permeability in which the specific
volumetric surface area of the phase boundaries is considered to be constant (Lage
1998). This variable permeability model, which has been used before in related studies
(Worster 1992; Emms & Fowler 1994), is related to the experimentally observed
variable permeability cases in porous media and is the modelling assumption for the
permeability in the present study.

3. Analyses
3.1. Steady basic-state and perturbation systems

The basic-state system is considered to be motionless, and the corresponding quantities
are designated by subscript ‘b’ and are assumed to be at most a function of z.

θ̃ = θb(z) + εθ(x, y, z, t), (5a)

χ̃ = χb(z) + εχ(x, y, z, t), (5b)

ũ = ub + εu(x, y, z, t), ub ≡ 0, (5c)

p̃ = pb(z) + εp(x, y, z, t), (5d)

K̃ = Kb(χb) + εK(χ), (5e)

where the small deviation of each dependent variable from its basic-state quantity,
which is the perturbation quantity whose magnitude is measured by the perturbation
amplitude ε, can vary with respect to spatial and time variables, as is evident from
(5a)–(5e).

Using (5a)–(5e) in (2a)–(2d) and (3a)–(3b) and setting all the perturbation quantities
to be zero, we find the following system of equations and boundary conditions for
the basic state:

d2θb/dz2 + dθb/dz + Sdχb/dz = 0, χbdθb/dz + (θb − C) dχb/dz = 0, dpb/dz = −Rθb,

(6a–c)

θb = −1 at z = 0, θb = χb − 1 = 0 at z = δ. (6d–e)

Using (6), we integrate the heat and solute equations once, apply the boundary
conditions and then substitute the expression for χb into the integrated form of the
heat equation, integrate and apply the boundary conditions again to determine the
basic-state solutions. However, these solutions would then depend on the mushy-layer
thickness δ, which appears so far as an arbitrary parameter. To concentrate on the
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most realistic possible solutions, we made use of the results of Worster (1991, 1992) for
the basic-state solutions in the upper liquid region in the limit of εm = 0 and found the
condition dθb/dz = θ∞ at the mush–liquid interface. Here, θ∞ = [T∞ − TL(C0)]/�T is
the non-dimensional far-field temperature. Using this condition, which represents the
continuity of the heat flux across the mush–liquid interface, in place of zero basic-state
temperature at z = δ, we find the following results for the basic-state solutions:

z(θb) = [(a1 − C)/(a1 − a2)] ln [(1 + a1)/(a1 − θb)] + [(C − a2)/(a1 − a2)]

× ln[(1 + a2)/(a2 − θb)], (7a)

where

a1 = (A1 +
√

A2)/2, a2 = (A1 −
√

A2)/2, A1 = (S + C + θ∞), A2 =
(
A2

1 − 4Cθ∞
)
,

(7b–e)
and

χb = C/(C − θb), pb = −R

∫
θb dz + p0, (8a, b)

where p0 is a constant.
To determine the thickness of the mushy layer, δ, we use the remaining condition

in (6e) for the basic-state temperature at the upper boundary by replacing θb and z

in (7a) with 0 and δ, respectively. Thus, the following expression for δ is obtained as
functions of the system parameters C, S and θ∞:

δ = [(a1 − C)/(a1 − a2)] ln [(1 + a1)/a1] + [(C − a2)/(a1 − a2)] ln [(1 + a2)/a2]. (9)

Using (5b) and (5e) in (4), we find

Kb = χ−3
b , (10)

K ∼ −3χ−4
b

[
χ − 2εχ−1

b χ2
]
. (11)

For the analysis of the perturbation system, it is convenient to use the general
representation

u = ΩP + Eψ, (12a)

Ω ≡ ∇ × ∇ × ez, E ≡ ∇ × ez, (12b–c)

for the divergent-free vector field u (Chandrasekhar 1961). Here, P and ψ are the
poloidal and toroidal functions for u, respectively. By taking the vertical component
of the curl of (2a) it can be shown that the toroidal part Eψ of u must vanish.
Taking the vertical components of the double curl of (2a) and using (2b) and (5)–(6)
in (2)–(3), we find the following system for the perturbation quantities, which will be
analysed in this section,

ε[∇2(K�2P )+ (∂/∂z)(ΩP · ∇K)]+ [Kb∇2 + (dKb/dz)(∂/∂z)]�2P − R�2θ = 0, (13a)

(∂/∂t − ∂/∂z − ∇2)θ + S(∂/∂t − ∂/∂z)χ − (dθb/dz)�2P = −ε(ΩP ) · ∇θ, (13b)

[χb(∂/∂t − ∂/∂z) − dχb/dz]θ + [(θb − C)(∂/∂t − ∂/∂z) − (dθb/dz)]

χ − (dθb/dz)�2P = −ε[(ΩP ) · ∇θ + χ(∂/∂t − ∂/∂z)θ + θ(∂/∂t − ∂/∂z)χ], (13c)

θ = P = 0 at z = 0, (14a)

θ = ∂P/∂z = χ = 0 at z = δ, (14b)

where

�2 ≡ ∂2/∂x2 + ∂2/∂y2.
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It will be useful to define the vectorial notation q = (θ , χ, P )T and introduce the
linear operators L and L′ and the nonlinear operator N, defined by (A 1)–(A 3) in the
Appendix, to represent the perturbation equations (13) succinctly as

(L − RL′)q = εN(q, q). (15)

The boundary conditions (14) can then be represented as

B[q(z = 0), q(z = δ)] = 0, (16)

where q(z = 0) and q(z = δ) mean (14a) and (14b), respectively.

3.2. Linear stability analysis

Designating the linear solution by q0 and setting ε = 0 in (15)–(16), we find the linear
system for the perturbations

(L − RL′)q0 = 0, B0[q0(z = 0), q0(z = δ)] = 0. (17a, b)

Since the coefficients in (17a) are functions of z only, the normal mode approach
(Chandrasekhar 1961) is used to express q0 in the form

q0 = q̃0(z)H (x, y) exp (σ t), (18)

where σ is the growth rate of the perturbations and the function H (x, y) satisfies

�2H = −α̃2H. (19)

Here the planform function H is given by

H (x, y) =

N∑
n=−N

AnHn, Hn ≡ exp(iαn · r), (20a, b)

i is the pure imaginary number (i =
√

−1), subscript n takes only non-zero integer
values from –N to N, N is a positive integer representing the number of distinct
modes, r is the position vector, and the horizontal wavenumber vectors αn satisfy the
properties

αn · ez = 0, |αn| = α̃, α−n = −αn (21)

(Busse 1967). The coefficients An are constants and satisfy the conditions

N∑
n=−N

AnA
∗
n = 1, A−n = A∗

n, (22a, b)

where the asterisk indicates the complex conjugate. The z-dependent coefficient q̃0 in
(18) satisfies an equation of the form (17a), provided ∂/∂t , ∂/∂z, R, �2 and ∇2 in L
and L′ are replaced, respectively, by σ , D ≡ d/dz, R̃0, −α̃2 and (D2 − α̃2), where R̃0 is
the Rayleigh number for the linear problem.

For each wavenumber α̃, a marginal Rayleigh number R̃0 is computed at which
σ = 0. The result may be plotted to obtain a neutral stability curve. In this paper,
we are interested only in the minimum value R0 of the Rayleigh number R̃0 on the
neutral stability curve, which is achieved at a particular value α of the wavenumber α̃.

3.3. Nonlinear analysis

3.3.1. Adjoint system

In order to compute the solvability conditions for the nonlinear systems, the
solutions to the adjoint linear problem are required. Since solution to (17) has the
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form given in (18) with the planform function H of the form (20a), the solution
q(a)

0 ≡ (θ (a)
0 , χ

(a)
0 , P

(a)
0 ) to the corresponding adjoint problem has the form

q(a)
0 =

N∑
n=−N

q(a)
0n , q(a)

0n =
(
θ

(a)
0n , χ

(a)
0n , P

(a)
0n

)T
= q̃(a)

0 (z)AnHn(x, y), (23a, b)

where the z-dependent coefficient function q̃(a)
0 (z) = [θ̃ (a)

0 (z), χ̃
(a)
0 (z), P̃

(a)
0 (z)]T is the

solution of the adjoint linear system

L(a)q̃(a)
0 = 0, B(a)

0

[
q̃(a)

0 (z = 0), q̃(a)
0 (z = δ)

]
= 0. (24)

The linear operator L(a) and the boundary condition B(a)
0 are defined by (A4) in the

Appendix.

3.3.2. Expansions

The expansions for the perturbation quantities and R that are required up to the
order ε2 in the present analyses, are

(P, θ, χ, R) ∼
2∑

n=0

(Pn, θn, χn, Rn) εn. (25a)

It should also be noted that in the present analyses, we must use the following
expansion for K up to only order ε

K ∼ K0 + εK1, (25b)

where it was found from (11) that

K0 = −3χ−4
b χ0, K1 = −3χ−4

b

[
χ1 − 2χ−1

b χ2
0

]
. (25c, d)

3.3.3. First-order problem

At order ε, the perturbation system is derived from (15)–(16) and has the form

(L − R0L
′)q1 = R1L

′q0 + N(q0, q0), B[q1(z = 0) = 0, q1(z = δ)] = 0. (26a, b)

Consider the system (26). The solvability condition for this system is derived by
multiplying (26a) by any particular solution q(a)

0n of the adjoint linear system, using
(26b) and averaging the resulting equation over the layer. It yields

R1 = −
〈
q(a)

0n N(q0, q0)
〉/〈

q(a)
0n L′q0

〉
, (27)

where angle brackets indicates the average over the layer.

3.3.4. Second-order problem

We now consider the system (15)–(16) at order ε2. It is

(L − R0L
′)q2 = R1L

′q1 + R2L
′q0 + N(q0, q1) + N(q1, q0), B[q2(z = 0), q2(z = δ)] = 0.

(28a, b)

The solvability condition at this order yields

R2 =
{
−R1

〈
q(a)

0n L′q1

〉
−

〈
q(a)

0n [N(q0, q1) + N(q1, q0)]
〉}

/
〈
q(a)

0n L′q0

〉
. (29)

The system (22) together with (27) and (29), can be used to study the steady
solutions in the form of two-dimensional rolls and three-dimensional cells. We shall
restrict our attention to the simplest types of solution, which include those observed
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in the applications. These solutions are called regular or semi-regular solutions (Busse
1967). In the case of a regular solution, all angles between two neighbouring α-vectors
are equal to a value designated by γ in degrees, and (22) yields

|A1|2 = · · · = |AN |2 = 1/(2N ). (30)

In the more general semi-regular solution, where (30) still holds, the scalar products
between any of the α-vectors and its two neighbouring α-vectors assume the constant
values α1 and α2. An example of a semi-regular solution is that due to rectangular
cells (N = 2), where α1 = − α2, and for each rectangular cell the angle between any
two neighbouring wavenumber vectors, which both originate at the cell centre and
each of which is directed toward a cell vertex, is either γ or 180◦−γ . Regular solutions
can follow from the semi-regular ones for the special case α1 = α2. Simple forms of
regular solutions correspond to the cases of two-dimensional rolls (N =1), square
cells (N =2) and hexagons (N = 3).

The simplest types of solution, which turn out to be preferred under certain
conditions in the present study, are described briefly as follows. For steady two-
dimensional rolls, N = 1, An = 1/

√
2 and the angle γ between the two wavenumber

vector is 180◦. For rectangular pattern convection, N = 2, An = 1/2 and γ �= 90◦. For
square pattern convection, N = 2, An = 1/2 and γ = 90◦. For hexagonal convection,
N = 3, An = 1/

√
6 and γ = 60◦ (Busse 1967, 1978). Since the right-hand side in the

expression for R1 given by (27) is found to be the sum of terms over subscripts k and
p each of which is proportional to the integral expression of the form 〈HnHkHp〉 that
differ from zero only if

αn + αk + αp = 0 (31)

for at least some k and p, then it can be seen that (31) cannot be satisfied for the
already described non-hexagonal solutions and, thus, R1 = 0 for such solutions, while
generally R1 �= 0 for the hexagonal solutions since (31) can be satisfied in this case.

As will be referred to in § 4, the sign of the vertical motion at the cell centres for
hexagons, which is determined by the sign of ε, is inferred from the condition

εR1 < 0 (32a)

for the subcritical hexagons at order ε and from

εR1 > 0 (32b)

for the supercritical hexagons at order ε. If the sign of the vertical motion at the cell
centres for the hexagons is negative, such hexagons are referred to as down-hexagons,
while up-hexagons refer to the case where the sign of the vertical motion is positive
at the cell centres.

3.4. Computation

3.4.1. Marginal stability problem

In contrast to the previous analytical studies of the nonlinear convection in mushy
layers that were referred to in § 1, here the equations for determining linear stability
must be solved numerically. To solve the marginal stability problem, we used a
multiple shooting technique (Keller 1976). First, we followed Worster (1992) by using
the basic-state temperature as the independent variable instead of z in the linear
system in order to avoid having to invert the transcendental equations for the basic
state. The variable

τ = −θb (33)
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maps the computational domain of the mushy zone into the closed interval [0, 1].
In this mapping, τ = 0 corresponds to the mush–liquid interface and the solid–mush
interface is located at τ = 1. We used such a change of variable to convert the
ordinary differential system for q̃0 with independent variable z into a corresponding
one with the independent variable τ . For a given set of parameters, the linear equation
for the τ -dependent coefficient q̃0, subjected to given boundary conditions at τ = 0
was integrated across the domain of the mushy layer, and the Rayleigh number was
varied and the equation for q̃0 reintegrated until the boundary condition at τ =1 was
satisfied. This led to an equation of the form F (R̃0, α̃; θ∞, C, S) = 0 for the marginally
stable states. From the latter equation and for given values of the parameters, the
neighbourhood of the minimum value of the Rayleigh number was located and
the marginal stability computations were further refined in this neighbourhood until
the minimum value of R̃0 with respect to α̃ was found. Then the eigenfunctions q̃0

of the linear system at the critical Rayleigh number R0 and wavenumber α were
determined.

3.4.2. Nonlinear problem

After the minimum Rayleigh number and the corresponding wavenumber were
found from the marginal stability problem, we solved the adjoint problem in τ using
the same method of approach as in the case of the original linear problem. We
checked the numerical integrity of the adjoint solutions by generating a neutral curve
from the adjoint system. The validity was ensured when a neutral curve generated
by the technique already described was computed based on the adjoint system and
was found to be equal to the neutral stability curve based on the original linear
system. After the adjoint solutions were found, we applied the solvability condition
(27) to the order ε of the perturbation system to obtain the first-order correction R1

to the Rayleigh number using Simpson integration. Next, we applied separation of
variables and followed standard weakly nonlinear theory (Busse 1967) for the order
ε of the perturbation system to determine the ordinary differential equations for the
z-dependent parts of the dependent variables for each mode of the selected flow
pattern. These equations are linear in the z-dependent parts of the dependent variables
in the order ε and contain non-homogeneous terms due to z-dependent parts of the
linear solution (18). Then, we used (33) to convert the resulting non-homogeneous
system in the order ε into a system with the independent variable τ and solved for each
mode of the selected flow pattern, the solutions of such a system in the τ -coordinate
using the multiple shooting for the linear two-point boundary-value problems (Ascher,
Mattheij & Russell 1995). The solution q1 was then determined for each mode of
selected types of flow pattern. We then applied the solvability condition (29) to the
order ε2 of the perturbation system to obtain the second-order correction R2 to the
Rayleigh number by Simpson integration. It should be noted that to determine the
results in the present qualitative study, accuracy to three decimal places was found to
be sufficient for each numerical value computed, including the first- and higher-order
corrections to the dependent variables and the Rayleigh number.

4. Results and discussion
4.1. Effect of the far-field temperature on the linear system

Here, the variation of the linear problem with respect to the far-field temperature θ∞
is discussed. The parameters C and S are kept constant equal to one. The mushy-layer
depth δ is plotted as a function of θ∞ in figure 2. It can be seen that the mushy-layer
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Figure 3. Variations of R0 and α versus θ∞ for C = 1 and S = 1.

thickness is reduced as the far-field temperature is increased, a result which was
also noted by Worster (1992) for the two-layer system. The variations of the critical
Rayleigh number and wavenumber versus θ∞ are shown in figure 3. It is seen that
R0 and α increase with the far-field temperature. This result indicates that the flow is
more stable and the flow structure can have a shorter horizontal length scale as θ∞
increases.

4.2. Nonlinear properties

Owing to the degeneracy of the linear system, these linear results are applicable to
both two- and three-dimensional convection cases whose nonlinear properties and
results are now presented and discussed.

Important quantities due to the nonlinear effects are the coefficients R1 and
R2, which are calculated in the present study. These coefficients represent leading
contributions to the change in R required to obtain finite amplitude ε for a nonlinear
solution. In terms of these coefficients, the amplitude of convection is of order

|ε| =
{
± |R1| ±

[
R2

1 + 4R2(R − R0)
]0.5}

/(2R2). (34)

As can be seen from (34), there are four expressions for |ε| corresponding to plus
and minus signs in front of the square-root term and plus and minus signs in front
of the |R1| term in (34). For the case εR1 < 0, the two roots with plus sign in front of
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R0 R

Figure 4. Bifurcation diagram (showing |ε| versus R) for four cases (i) εR1 > 0, R2 > 0 (dashed
line), (ii) εR1 > 0, R2 < 0 (solid line), (iii) εR1 < 0, R2 > 0 (dotted line), (iv) εR1 < 0, R2 < 0
(dash-dot line).

|R1| provide the expressions for |ε|, while the two roots with negative sign in front of
|R1| provide the expressions for |ε| if εR1 > 0. For either case εR1 < 0 or case εR1 > 0,
the expression with the plus sign in front of the square-root term corresponds to
the case where R2 is positive, while the expression with negative sign in front of the
square-root term corresponds to the case where R2 is negative.

For sufficiently small |ε|, we may neglect the term R2ε
2 in comparison to the term

R1ε in the expression for R, which leads to the following expression for |ε|:

|ε| = ±(R − R0)/|R1|, (35)

where the plus sign corresponds to the case εR1 > 0, while the minus sign corresponds
to the case εR1 < 0. The expressions (34)–(35) provide some qualitative bifurcation
results showing |ε| versus R, which are presented in figure 4. We have assumed that
initially |ε| is sufficiently small. It should be noted that by the preferred convection
pattern we mean the one that corresponds to the lowest value of R, which is often the
case in the observation, and also agrees with the experimental expectation that the
heat or solute transported by such a convection pattern, or equivalently the square
of the convection amplitude ε2, should increase with R. In fact, Iooss & Joseph
(1980) have shown that those bifurcation branches for which the amplitude deceases
with increasing R are probably not realizable. Hence, the results discussed in this
paragraph may be useful to indicate the realization of a particular flow pattern if
certain information about the values of R1 and R2 for such flow a pattern is available.

It is worth noting that in the case of non-zero R1, which can correspond to the
cases where convection is in the form of hexagons, both (34) and (35) for |ε| can be
applicable. For R1 = 0, which can correspond to the cases of two-dimensional rolls,
rectangles and square pattern convection, then the sign of R2 determines whether the
steady solution exists for values of R above or below R0. For R1 = 0 and supercritical
convection, where R > R0, the amplitude of convection increases with R and is largest,
provided the value of R2 is smallest among all the solutions to the nonlinear problem.
For R1 = 0 and subcritical convection, where R < R0, the amplitude of convection
decreases with increasing R and is largest, provided |R2| is smallest among all the
solutions.

In the present problem, the coefficients R1 and R2 are due to the nonlinear
convective terms in the temperature equation and the nonlinear interactions between
the flow velocity and the non-uniform and nonlinear permeability associated with the
perturbation to the basic-state liquid fraction.

It should also be noted that the variations of R1 with respect to different parameters
provide information about various destabilizing and stabilizing features for the
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Figure 5. Bifurcation regions in the (ε, R1)-plane for given R2 > 0 (a) or R2 < 0 (b) and in
the (ε, R2)-plane for given R1 > 0 (c) or R1 < 0 (d). Here the regions bounded by the solid
lines and designated by a +(−) indicate regions for supercritical (subcritical) bifurcation. For
R1 = 0, the supercritical (subcritical) region is the upper (lower) half-plane in the (ε, R2)-plane.

hexagonal convection. However, the information about R2 for the hexagons and
non-hexagons is useful in the sense that since R2 is the second-order coefficient in the
expansion for R in powers of ε, R2 plays useful roles in calculating the solute flux
and the order of magnitude of ε in (34) and in the cases where R1 is zero or becomes
negligible.

To appreciate how R1 and R2 collectively lead to subcritical or supercritical
bifurcations, figure 5 provides bifurcation regimes in the (ε, R1)-space for given
R2 > 0 (figure 5a) or R2 < 0 (figure 5b) and in the (ε, R2)-space for given R1 > 0
(figure 5c) or R1 < 0 (figure 5d). In these figures, regions bounded by the solid lines
and designated by a plus ‘+’ sign indicate supercritical bifurcation regions, whereas
those designated by a minus ‘−’ sign indicate subcritical bifurcation regions. For
R1 = 0, the supercritical (subcritical) bifurcation region is the upper (lower) half-plane
in the (ε, R2)-space.

4.3. Effect of the far-field temperature on the nonlinear system

We now consider the cases of two- and three-dimensional convection near the onset
of motion. In this paper, three types of non-hexagonal convection, where R1 = 0, are
considered in the form of two-dimensional rolls, three-dimensional rectangles with
γ = 45◦ and squares, where the corresponding expressions for R2 in the associated
figures are designated by R

(r)
2 , R

(ra)
2 and R

(s)
2 , respectively. In figure 6, the results on the

effect of θ∞ on R2 for rolls, rectangles and squares are shown. It can be seen that the
variation in R2 as θ∞ is increased becomes more extreme in the case of squares, and
subcritical rolls and rectangles exist over the whole range of the far-field temperature
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considered. However, in the case of squares, the results show that the flow can become
supercritical for the values of θ∞ between 2.370 and 2.962.

For the hexagonal solution, R1 is plotted versus far-field temperature in figure 7.
It is seen that R1 changes sign as the far-field temperature is increased beyond some
value. The results for the variation of R2 versus far-field temperature are shown in
figure 8. It is seen that R2 > 0 for the values of θ∞ between 1.795 and 3.275. Using the
results shown in figures 4, 6 and 7, it can be concluded that realizable hexagons are
possible for given values of the far-field temperature.

4.4. Effect of the concentration ratio on the linear system

We studied the effect of varying C by setting θ∞ and S equal to one. Figure 9
presents variation of the mushy-layer depth with respect to C. Since the parameter
C may be viewed as the non-dimensional parameter for the composition of the
constituent dendrites formed during the solidification, increasing the composition of
the constituent dendrites can increase the mushy-layer depth, as the results shown in
this figure indicate. We also determined the results for the variations of R0 and α versus
C (figure 10). It can be seen from this figure that the flow is destabilized with increasing
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Figure 10. Variations of R0 and α versus C for S = 1 and θ∞ =1.

C, and the decrease in R0 with increasing C agrees with the corresponding linear
result reported in Worster (1992) for the two-layer system. The critical wavenumber
also decreases with increasing C.
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4.5. Effect of the concentration ratio on the nonlinear system

For the non-hexagonal solutions (R1 = 0), the results for the variation of R2 versus C

for S = θ∞ =1 are shown in figure 11. It can be seen that squares can be supercritical
for C � 0.5, whereas the other two flow patterns are subcritical over the whole range
of C considered. All three types of flow have a similar non-monotonic behaviour with
respect to the variation with C.

For the hexagonal solutions, the results for the variation of R1 versus C for
S = θ∞ = 1 are shown in figure 12. It can be seen that R1 < 0 over most of the
considered domain for C, but R1 > 0 only for small values of C, which implies the
possible existence of subcritical down-hexagons or supercritical up-hexagons in this
range of values of C and for sufficiently small |ε|. The results for the variation of
R2 versus C for S = θ∞ = 1 (figure 13) indicate that supercritical hexagons are not
possible for C > 0.643 and for |ε| beyond some value. The coefficient R2 decreases
from C = 0.5 to 1.587, but then tends to increase as concentration ratio is increased
further.

4.6. Effect of the Stefan number on the linear system

We now hold both the far-field temperature and concentration ratio fixed equal to
one and vary the Stefan number. Increasing S under these conditions decreases the



Weakly nonlinear convection during solidification of alloys 159

1000

500

0

–500

R2

–1000

–1500
0 2 4 6

C

8 10 12 13

Figure 13. Variation of R2 versus C for hexagons with S = 1 and θ∞ = 1.

07

0.6

0.5

0.4

δ

0.3

0.2
0 2 4 6

S

8 10

Figure 14. Variation of δ versus S for C = 1 and θ∞ = 1.

200

100

50R0

R0

20

10
0.1 0.2 0.5 1

S

2 5 10
4

6

8 α

10

12

Figure 15. Variations of R0 and α versus S for C = 1 and θ∞ =1.

depth of the mushy layer (figure 14). Our results for the variation of the critical
wavenumber and the Rayleigh number versus S (figure 15) indicate that α increases
with S, while S has a destabilizing effect on the flow in the sense that R0 decreases
with increasing S.
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4.7. Effect of the Stefan number on the nonlinear system

For the non-hexagonal solutions (R1 = 0), the variation of R2 versus S for C = θ∞ = 1
leads to the results (figure 16) that are briefly described as follows. Non-hexagonal
flows may be subcritical or supercritical, depending on the value of S. Rolls can be
subcritical when S < 9.069, rectangles when S < 7.871, and squares when S < 5.817.
For large values of S, R2 > 0, and the supercritical regime is enhanced for all these
flow cases.

For the hexagonal convection, the variation of R1 with respect to S for C = θ∞ = 1
(figure 17) indicates that R1 is negative and monotonically decreases with increasing S.
The variation of R2 with respect to S for C = θ∞ = 1 is different (figure 18) in the
sense that R2 is positive for sufficiently large values of S and negative otherwise.

4.8. Additional results of the present study

In addition to the results presented and discussed in the previous subsections, which
were the main outcome of the present study, we also determined some results about
the values of the dependent variables as functions of the independent variables
for different values of the parameters (Okhuysen 2005). The corresponding typical
results are given here briefly as follows. The convective flow was found to exist at
every horizontal level from top to bottom of the mushy layer. The results for the
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liquid fraction indicated, in particular, relatively high values of liquid fraction in
the neighbourhood of certain locations and extending from bottom to top of the
mushy layer. Regions of high values of liquid fraction were surrounded by regions of
relatively low liquid fraction. Such results indicate a tendency for chimney formation
in the focused upflow regions, which reflect those determined for the chimneys by
Chen & Chen (1991).

4.9. Comparison with the previous weakly nonlinear studies

Here, we first briefly describe the main features of the weakly nonlinear studies and
the corresponding results due to Amberg & Homsy (1993), Anderson & Worster
(1995) and Chung & Chen (2000), and then we compare the main features and the
results of these to those of the present study.

The model treated in Amberg & Homsy (1993) assumes impermeable upper
boundary, δ � 1, θ∞ � 1, C = O(1/δ), S = O(1), ε = O(δ) and a nearly constant case
of the inverse of the permeability function in the form

K̃ = 1 + K1φ + K2φ
2 + O(φ3), φ ≡ (1 − χ) � O(δ), (36a, b)

where K1 and K2 are two constant parameters. Their linear problem yields the critical
values for R0 and α. For the nonlinear problem, only rolls up to O(ε2) (R1 = 0, R2 �= 0)
and hexagons up to order ε(R1 < 0) without any stability consideration were studied.
They found that rolls were supercritical for sufficiently small values of K1 and
subcritical for K1 beyond some value. Their hexagonal solution was found to be that
of up-hexagons and bifurcated transcritically, which contradicts the experimental
observations by Tait et al. (1992).

The model studied in Anderson & Worster (1995) assumes (36), impermeable upper
boundary, δ � 1, θ∞ � 1, C =O(1/δ), S =O(1/δ), K1 = O(δ) and ε � δ � 1. Their
linear problem yields the critical values for R0 and α. For the nonlinear problem, only
rolls (R1 = 0, R2 > 0) and hexagons (R1 < 0, R2 > 0) up to order ε2 were studied. The
authors used their finite-amplitude solutions to derive an evolution equation, which
was then used to investigate the stability of rolls and hexagons. They found that
either up-hexagons or down-hexagons can be stable for sufficiently small |ε|, whereas
rolls, which are supercritical, can become stable for larger |ε|. However, the parameter
regime for the preference of down-hexagons was found to be significantly far from
that observed experimentally (Tait et al. 1992).
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The model treated in Chung & Chen (2000) assumes those of Anderson & Worster
(1995), except that the permeable upper boundary is considered instead. Their linear
problem yields the critical values for R0 and α. For the nonlinear problem, they found
similar results to those of Anderson & Worster (1995). However, even though the
parameter regime for the preference of their detected down-hexagons was far from
that observed experimentally, it was somewhat less far from the experimental value
than that due to Anderson & Worster (1995). The main deficiencies of this model,
as well as those earlier ones, have been the unrealistic features of small mushy-layer
thickness, large far-field temperature and near-constant permeability. These unrealistic
aspects of the model were partially recognized by Chung & Chen (2000) when they
unsuccessfully attempted to add up terms in their series expansions in powers of δ in
order to determine a more realistic result about the sense of the flow direction at the
cell centres of the hexagons.

In the present study, we developed a realistic model by removing the assumptions
posed in the previous models. Finite value for δ and arbitrary values for θ∞, C and
S are considered. The basic state and the linear problem yield δ, R0, and α over a
wide range of parameter values. Our linear results generally agree with those reported
in the previous studies described above in the limits of small δ and large θ∞. For
the nonlinear problem, rolls (R1 = 0, R2 �= 0), up-hexagons (R1 �= 0, R2 �=0), down-
hexagons (R1 �= 0, R2 �= 0), squares (R1 = 0, R2 �=0) and rectangles (R1 = 0, R2 �= 0) up
to O(ε2) were studied. We found that depending on the values of the parameters,
supercritical or subcritical non-hexagons and hexagons are possible. Our nonlinear
results in the parameter regime for small θ∞, C = S =1 and δ ∼ 2, which is close to the
parameter regime of the experiments (Tait et al. 1992), indicate that the amplitude
of any of the non-hexagonal solutions or up-hexagons decreases with increasing R,
whereas the amplitude of the down-hexagons can increase with R. These results
imply that any solution in the form of non-hexagons or up-hexagons is not preferred
and is probably unstable, whereas the solution in the form of down-hexagons is
the only detected solution, which is preferred and probably stable. These results of
the present study are in agreement with a particular experimental observation due
to Tait et al. (1992). For the case of small δ and large θ∞, our nonlinear results
agree with those of the previous weakly nonlinear studies in the case of hexagons
since up-hexagons are preferred and down-hexagons are not preferred. Also, in
this case, our result for rolls agrees with those of the previous weakly nonlinear
studies since we found, in particular, a nonlinear solution in the form of subcritical
rolls.

4.10. Relation of present study to experiments

In this paper, we were mainly concerned with a particular phenomenon that occurs
when convection in the mushy layer does not become too vigorous. The convective
flow that we investigated here is weak because our method of study is based on
a weakly nonlinear theory. In addition, the analyses in the present study were for
steady flow during steady-state solidification where the solidified material is pulled
at a constant rate through a fixed temperature gradient. Consequently, we cannot
expect to infer any results from the present study about the flow features in a mushy
layer where chimneys are fully developed or transient conditions prevail. Thus, we
are mostly interested in comparing the present results to those that can occur in
experiments when convection in the mushy layer does not become too vigorous,
although we are also interested in finding any possible relation between our present
study and those of experiments, which were under transient or other conditions.
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In the last several decades there have been a number of experimental studies of
convection in mushy layers, notably those due to Copley et al. (1970), Chen & Chen
(1991), Tait & Jaupart (1992), Chen (1995) and Aussillous et al. (2006), which were
all performed under transient conditions, and the one due to Tait et al. (1992). Copley
et al. (1970) were among the first to identify the primary instability of the fluid in
the mushy layer, which is the one of interest here and investigated in the present
paper.

Chen & Chen (1991) carried out experiments using 26 % ammonium chloride–water
solutions. The convective flow was strong enough to lead to fully developed vertical
chimneys within the mush, which were detected by using computer tomography. The
authors found that chimneys extended all the way into the mushy layer, with little
or no decrease in diameter. This result is in general agreement with the result of
the present study about the existence of regions of high liquid fraction in the mushy
layer.

Tait & Jaupart (1992) carried out solidification experiments using aqueous solutions
of ammonium chloride with different viscosities, which allowed them to estimate
a critical Rayleigh number Rm for some values of the far-field temperature and
viscosities in the melt. Here Rm, which is related to R0 by Rm = δΠ(χm)R0, is defined
based on the undisturbed depth of the mushy layer δκ/V and the mean permeability
of the layer Π (χm)Π (1), where χm is the mean porosity of the layer. Following
Worster (1992), we used (7)–(8) and evaluated Rm for some values of the far-field
temperature and found qualitative agreement with the corresponding experimental
values obtained by Tait & Jaupart (1992). Explicitly, our quantitative comparison
with the experimental values is briefly given as follows. Although figure 17 in Tait &
Jaupart (1992) provides log-scale values of their porous medium Rayleigh number
for different values of far-field temperature, we found it more convenient to make
use of the experimental data points shown in figure 12 of Worster (1992) that were
provided by Tait & Jaupart (1992). These experimental data points were collected
for different viscosities of the melt used in the experiments. From these graphical
points, we estimated value of Rm to be between 21 and 23 (viscosity: 5.0 mPa s) for
θ∞ =0.1, about 20 (viscosity: 16.0 mPa s) for θ∞ =0.13, between 18 and 20 (viscosity:
9.0 mPa s) for θ∞ = 0.6 and between 16 and 18 (viscosity: 9.0 mPa s) for θ∞ = 1.1. The
corresponding values for Rm in the present study are about 28.8, 27.0, 19.4 and 18.5,
respectively. Our present result that mush thickness decreases with increasing far-field
temperature is also in agreement with Tait & Jaupart’s experimental result. These
authors also observed that for melt at low viscosity, the chimneys penetrate all the
way into the mushy layer and have a roughly constant diameter, whereas for melt at
high viscosity the chimneys can broaden out into a ‘root’ structure. Our present result
about regions of high liquid fraction is in agreement with their result for chimneys in
the low-viscosity melt case, but not for the high-viscosity melt case. It should be noted
that as Tait et al. (1992) suggested, in the experiments carried out by Tait & Jaupart
(1992), the initial cooling of the base was not slow enough, so that the authors were
not able to observe the initial stage of the flow pattern owing to the convection in
the mushy layer.

The only experimental study that has been reported so far for weak convection in
a mushy layer, which successfully detected the corresponding flow pattern, is that due
to Tait et al. (1992). The experiments by these authors were designed with a much
lower cooling rate than any other experiments, which probably gave instabilities more
time to grow before the background temperature and the mush thickness had changed
appreciably. These authors cooled and solidified a 28 % ammonium chloride–water



164 B. S. Okhuysen and D. N. Riahi

solution from below very slowly and carefully so that they were able to observe the
onset of convection during the first stage of their experiments when the transient
effects were negligible. They observed vertical, sheet-like upward flow forming along
the sides of a roughly polygonal array. They carried out a statistical analysis of the
number of nodes in the array and the lengths of sides of the polygons, and they
found that among all possible plan forms, hexagons were closest to their results. The
flow was found to be downward at the hexagonal cell centres and upward along
the cell boundaries, where the crystals were dissolved to form chimneys. According
to Tait et al. (1992), the flow pattern evolved with time as the mush thickened.
Eventually, vertical chimneys formed at the nodes where the cell boundaries met,
the branches disappeared and size of each cell increased notably. The formation of
chimneys involved re-crystallization along the edges of the cells. The initial down-
hexagonal planform that was observed in the first stage of their experiment, and
was found to be a robust feature of the experiment, is in good agreement with
our present results. We, in fact, found such a flow pattern to be the only realizable
form of convection under similar conditions to those of Tait et al. It should be
noted that in a down-hexagonal cell (Chandrasekhar 1961), downward motion occurs
in a large central portion of the cell with maximum value of downward speed
at the cell centre, whereas upward motion occurs close to the cell boundary with
maximum value of upward speed at the vertices of the cell, which are the nodes
where the cell boundaries meet. Tait et al. (1992) carefully took into account these
standard properties of such hexagonal pattern (Busse 1978) and found that their
observed flow pattern is closest to that for down-hexagons than to any other possible
pattern.

Chen (1995) used a number of techniques to study experimentally the nature
of convection in a mushy layer. Chen (1995) found that after chimneys were fully
developed, downward convection toward the bottom took place followed by horizontal
motion along the bottom toward the chimneys and then upward motion through
chimneys. The results for the solid fraction indicated a significant decrease toward
the bottom of the tank after chimneys were fully developed. However, the general
characteristics of the solid fractions are comparable to those of the present study only
in the region not too close to the lower boundary where the root system at the bottom
of chimneys was found by Chen (1995). Although no quantitative or graphical results
for the critical Rayleigh number were provided in Chen (1995), the author stated that
his estimated value of the critical Rayleigh number was within a factor of 1.6 of the
value found by Tait & Jaupart (1992), which is somewhat larger than that found in
the present study.

Aussillous et al. (2006) carried out experiments using magnetic resonance imaging
to study fully developed chimneys and convection in a mushy layer formed from an
aqueous sucrose solution cooled from above. The viscosity of this aqueous solution
increases strongly with the sucrose concentration and as temperature decreases. They
found, in particular, that the chimneys do not span the full depth of the mushy layer,
but they are visible only from 17 mm away from the cooling plate. If we interpret the
chimneys as the regions of high porosity in our study, then the stated experimental
result away from the cooling boundary is in general agreement with the present result.
The convection in their experiment seems to be limited only to the lower section of
the mushy layer, while convective flow in the mushy layer of the present study has no
such limitation. These partial differences are expected to be due the fact that the fluid
in these experiments has strong temperature and concentration-dependent viscosity
and these experiments are for the transient flow regime where chimneys are fully
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developed, while the present study is for constant-viscosity fluid and for weak steady
convection, where no chimney is fully developed.

5. Conclusion and remarks
We investigated the problem of weakly nonlinear buoyant convection in mushy

layers during alloy solidification for a permeable mush–liquid interface. We developed
a new model for the problem, which is more realistic than those developed in the
past and is relevant for mushy layers with finite thickness and for arbitrary values of
the parameters, such as far-field temperature, concentration ratio and Stefan number.
We analysed the effects of several parameters on two- and three-dimensional steady
convection cases. Using both analytical and numerical methods, we determined the
steady solutions of the weakly nonlinear problem in different ranges of the values of
the parameters. We found that depending on the range of values of the parameters,
bifurcation to hexagon or non-hexagon pattern convection can be either supercritical
or subcritical. Among all the solutions detected, there are those whose amplitudes
increase with R, which we label as realizable solutions, and those whose amplitudes
decrease with increasing R, which are probably unstable and, thus, not physically
realizable.

The most important result of the present study was the prediction of realizable
convection with down-hexagonal pattern, which was observed by Tait et al. (1992),
and our prediction of such a flow pattern was under particular conditions and range
of the values of the parameters that cover those of the same experiment by Tait
et al. (1992). Over the same particular conditions and range of parameter values, we
found that all the other predicted solutions in the form of rolls, squares, rectangles or
up-hexagons are not realizable and probably unstable since their amplitudes decrease
with increasing R.

The present results are based on our newly developed model, which is applicable
to mushy layers with finite thickness δ and for arbitrary values of the parameters,
such as the far-field temperature θ∞, the concentration ratio C and the Stefan
number S. The previous analytical studies (Amberg & Homsy 1993; Anderson &
Worster 1995; Chung & Chen 2000) were all based on the limit of large far-field
temperature (θ∞ � 1) and small mushy-layer thickness (δ � 1). The authors of these
previous studies attempted to compare their results with those of the experiment
by Tait et al. (1992), but mostly no significant agreement was found because the
experimental observations were for δ = O(1) and θ∞ � 1, which were sharply different
from those assumed in the previous analytical studies. For example, Chung & Chen
(2000) concluded preference of up-hexagons in the parameter regime where Tait
et al. (1992) observed down-hexagons. Chung & Chen (2000) recognized that a future
improvement of their model could be to lift the condition of small δ(δ � 1). However,
we detected that in addition to finite-δ values, which has been important for the
present model, the small value of θ∞ has been significant too for the prediction of the
experimental results since we found that the results for θ∞ � 1 can be quite different
from those for θ∞ � 1.

As discussed in the previous section, the convection in the mushy layer that
was observed by Tait et al. (1992), was initially in the form of down-hexagons,
where transient effects were negligible, but later as the thickness of the mushy
layer thickened sufficiently, the pattern changed into a new structure where in each
hexagonal cell, upward motion occurred along six chimneys at the cell’s six nodes and
downward motion remained similar to that for a down-hexagonal cell. Our present
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theory predicted only the initial flow pattern observed by Tait et al. (1992), which
existed for limited values of the mush thickness when the transient effects did not
become significant. This restriction for the theoretical prediction may well be related
to an important difference between the typical experiments and weakly nonlinear
theories. The typical experiments examine time-dependent solidification with a fixed
cooled base and time-dependent mushy layer thickness, and time-dependent effects
can become significant when the value of mush thickness increases sufficiently, raising
the value of the effective Rayleigh number beyond some value. However, the theories
have been for steady solidification at constant speed of a mushy layer with constant
thickness and sufficiently low values of the Rayleigh number. It is hoped that in
future, new types of nonlinear theories can be developed that can deal with time-
dependent solidification problems such as the one explained here, which could lead
to more predictions of the experimental results.

Finally, in regard to the stability of the finite-amplitude flow solutions predicted in
the present study, it should be noted that the present perturbation approach is gener-
ally incapable of carrying out a standard stability analysis (Busse 1967) because the
asymmetries in the present problem, which cause non-zero values for R1, are, in gen-
eral, not small. A stability investigation, which requires extensive work and remains a
topic for future study, will require full numerical computation of both finite-amplitude
solutions and their stability analysis without using the perturbation approach.

Appendix
The expressions for the 3 × 3 matrix operators L and L′ and the vector operator N

are

L= (row 1, row 2, row 3)
T , (A 1a)

where row i (i =1, 2, 3) is the ith row of the matrix L and given by

row 1 ≡ {(∂/∂t − ∂/∂z − ∇2), [S(∂/∂t − ∂/∂z)], [−(dθb/dz)�2]},
row 2 ≡ {[χb(∂/∂t−∂/∂z)−dχb/dz], [(θb − C)(∂/∂t−∂/∂z)−dθb/dz], [−(dθb/dz)�2]},
row 3 ≡

{
− RK−1

b �2, 0,
[(

∇2 + K−1
b dKb/dz∂/∂z

)
�2

]}
, (A 1b–d)

and

L′ =(row ′
1, row

′
2, row

′
3)

T , (A 2a)

where row ′
i(i = 1, 2, 3) is the ith row of the matrix L′ and given by

row ′
1 ≡ 0, row ′

2 ≡ 0, row ′
3 ≡

(
K−1

b �2, 0, 0
)
, (A 2b–d)

and

N(q, q) = −{[(ΩP ) · ∇θ], [(ΩP ) · ∇θ + χ(∂/∂t − ∂/∂z)θ

+ θ(∂/∂t − ∂/∂z)χ], K−1
b [(∂/∂z)(∇K · ΩP ) + ∇2(K�2P )]}T

. (A 3)

The expression of the 3 × 3 matrix differential operator L(a) is

L(a) =
[
row (a)

1 , row (a)
2 , row (a)

3

]T
, (A 4a)

where row (a)
i is the ith row of the matrix L(a) and given by

row (a)
1 ≡

[
(D2 − D − α̃2), −χbD, −R̃0K

−1
b

]
, row (a)

2 ≡ [SD, (θb − C)D, 0],

row (a)
3 ≡

{
− dθb/dz, −dθb/dz,

[
D2 − K−1

b dKb/dzD − K−2
b (d2Kb/dz2Kb

− dKb/dzdKb/dz + α̃2)
]}

, (A 4b)
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and the boundary conditions B(a) mean

θ̃
(a)
0 = P̃

(a)
0 = χ̃

(a)
0 = 0 at z = 0, θ̃

(a)
0 =

(
D − dKb/dzK−1

b

)
P̃

(a)
0 = 0 at z = δ. (A 4c, d)
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